Back to Search
Start Over
Gröbner Bases and Dimension Formulas for Ternary Partially Associative Operads
- Source :
- Leavitt Path Algebras and Classical K-Theory ISBN: 9789811516108
- Publication Year :
- 2020
- Publisher :
- Springer Singapore, 2020.
-
Abstract
- Dotsenko and Vallette discovered an extension to nonsymmetric operads of Buchberger’s algorithm for Grobner bases of polynomial ideals. In the free nonsymmetric operad with one ternary operation \(({*}{*}{*})\), we compute a Grobner basis for the ideal generated by partial associativity \(((abc)de) + (a(bcd)e) + (ab(cde)\). In the category of \(\mathbb {Z}\)-graded vector spaces with Koszul signs, the (homological) degree of \(({*}{*}{*})\) may be even or odd. We use the Grobner bases to calculate the dimension formulas for these operads.
- Subjects :
- Polynomial (hyperelastic model)
Mathematics::Commutative Algebra
Degree (graph theory)
Mathematics::Rings and Algebras
Dimension (graph theory)
Mathematics::Algebraic Topology
Combinatorics
Gröbner basis
Mathematics::K-Theory and Homology
Computer Science::Symbolic Computation
Ideal (ring theory)
Ternary operation
Associative property
Vector space
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Leavitt Path Algebras and Classical K-Theory ISBN: 9789811516108
- Accession number :
- edsair.doi...........4e3fcb2ae7e280a45e8f71f3bf437fa7
- Full Text :
- https://doi.org/10.1007/978-981-15-1611-5_6