Back to Search Start Over

Gröbner Bases and Dimension Formulas for Ternary Partially Associative Operads

Authors :
Fatemeh Bagherzadeh
Murray R. Bremner
Source :
Leavitt Path Algebras and Classical K-Theory ISBN: 9789811516108
Publication Year :
2020
Publisher :
Springer Singapore, 2020.

Abstract

Dotsenko and Vallette discovered an extension to nonsymmetric operads of Buchberger’s algorithm for Grobner bases of polynomial ideals. In the free nonsymmetric operad with one ternary operation \(({*}{*}{*})\), we compute a Grobner basis for the ideal generated by partial associativity \(((abc)de) + (a(bcd)e) + (ab(cde)\). In the category of \(\mathbb {Z}\)-graded vector spaces with Koszul signs, the (homological) degree of \(({*}{*}{*})\) may be even or odd. We use the Grobner bases to calculate the dimension formulas for these operads.

Details

Database :
OpenAIRE
Journal :
Leavitt Path Algebras and Classical K-Theory ISBN: 9789811516108
Accession number :
edsair.doi...........4e3fcb2ae7e280a45e8f71f3bf437fa7
Full Text :
https://doi.org/10.1007/978-981-15-1611-5_6