Back to Search Start Over

Analysis of Brain Structure and Neural Organization in Dystrophin-Deficient Model Mice with Magnetic Resonance Imaging at 7 T

Authors :
Mitsuki Rikitake
Junichi Hata
Mayu Iida
Fumiko Seki
Rina Ito
Yuji Komaki
Chihoko Yamada
Daisuke Yoshimaru
Hirotaka James Okano
Takako Shirakawa
Source :
The Open Neuroimaging Journal. 15
Publication Year :
2022
Publisher :
Bentham Science Publishers Ltd., 2022.

Abstract

Background: Dystrophin strengthens muscle cells; however, in muscular dystrophy, dystrophin is deficient due to an abnormal sugar chain. This abnormality occurs in skeletal muscle and in brain tissue. Objective: This study aimed to non-invasively analyze the neural organization of the brain in muscular dystrophy. We used a mouse model of muscular dystrophy to study whether changes in brain structure and neurodegeneration following dystrophin deficiency can be assessed by 7T magnetic resonance imaging. Methods: C57BL/10-mdx (X chromosome-linked muscular dystrophy) mice were used as the dystrophic mouse model and healthy mice were used as controls. Ventricular enlargement is one of the most common brain malformations in dystrophin-deficient patients. Therefore, we examined whether ventricular enlargement was observed in C57BL/10-mdx using transverse-relaxation weighted images. Brain parenchyma analysis was performed using diffusion MRI with diffusion tensor images and neurite orientation dispersion and density imaging. Parenchymal degeneration was assessed in terms of directional diffusion, nerve fiber diffusion, and dendritic scattering density. Results: For the volume of brain ventricles analyzed by T2WI, the average size was 1.5 times larger in mdx mice compared to control mice. In the brain parenchyma, a significant difference (p < 0.05) was observed in parameters indicating disturbances in the direction of nerve fibers and dendritic scattering density in the white matter region. Conclusion: Our results show that changes in brain structure due to dystrophin deficiency can be assessed in detail without tissue destruction by combining diffusion tensor images and neurite orientation dispersion and density imaging analyses.

Details

ISSN :
18744400
Volume :
15
Database :
OpenAIRE
Journal :
The Open Neuroimaging Journal
Accession number :
edsair.doi...........4ed0f12105c66f8d611407fe630d8272