Back to Search Start Over

Power Generation Properties of Flow Nanogenerator With Mixture of Magnetic Nanofluid and Bubbles in Circulating System

Authors :
Hong-Soon Choi
Jonghoo Park
Se-Hee Lee
Su-Hun Kim
Source :
IEEE Transactions on Magnetics. 53:1-4
Publication Year :
2017
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2017.

Abstract

A method has been developed for demonstrating a flow nanogenerator by using a mixture of magnetic nanofluid (MNF) and bubbles in a fluid circulating system, and notable phenomena related to the power generation properties of the nanogenerator have been explored. MNF is widely used in various areas because of its interesting magnetic properties under an external magnetic field. The objective of the proposed technique is to obtain the induced electromotive force (EMF) based on Faraday’s law due to the flow of MNF in a closed-circulating system. To maximize the induced EMF, magnetic nanoparticles (MNPs) should pass through the induction coil with a perpendicular magnetization direction in accordance with Faraday’s law. To control the magnetization direction of the MNPs, a permanent magnet was employed to produce an external magnetic field that considers the Brownian and Neel motions. To obtain a continuously induced voltage, a circulation system was implemented ensuring the flow of the MNF in the closed cycle. Further, power generation properties were investigated considering electric, magnetic, and fluidic effects. To analyze this complicated physics, a multiphysics analysis was used to calculate the flow pattern of the MNF according to its magnetic properties, and the acquired results were compared with those obtained from the experiment. From these experiments, we investigated the generation properties of the nanogenerator considering the flowrate of the MNF as well as the presence or absence of bubbles within the MNF. Our experimental tests demonstrated that the continuous power generation mode was successfully achieved with a mixture of MNF and bubbles.

Details

ISSN :
19410069 and 00189464
Volume :
53
Database :
OpenAIRE
Journal :
IEEE Transactions on Magnetics
Accession number :
edsair.doi...........4fba569b040c3ec087e5f3b6b0d5fb7a
Full Text :
https://doi.org/10.1109/tmag.2017.2705804