Back to Search Start Over

Arsenic contamination, speciation, toxicity and defense strategies in plants

Authors :
Sheo Mohan Prasad
Anuradha Patel
Rohit Kumar Mishra
Sanjesh Tiwari
Source :
Brazilian Journal of Botany. 44:1-10
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

This review explains the transport, mobility, resistance and detoxification of toxic metalloid arsenic (As) in plants. Arsenic is ubiquitously present in Earth’s crust; however, numerous human interventions such as rapid industrialization use of As-based pesticides, insecticides and discharge of industrial wastes in water bodies leads to cumulative increase in As in the environment and has become a global challenge. Arsenic exists in different organic and inorganic forms, but inorganic forms such as pentavalent arsenate (AsV) and trivalent arsenite (AsIII) are more toxic and actively taken up by plants. Its toxicity is marked by generation of reactive oxygen species (ROS) that are capable of degrading various biomolecules of the cellular systems. To keep the ROS under the limit, plants have an array of enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione-S-transferase (GST); and non-enzymatic antioxidant like ascorbate, proline, and cysteine. Contrary to this, As-hyper-accumulator plants survive under high concentration of As through the strenuous action of Asv reduction into AsIII followed by the vacuolar compartmentalization of complex or inorganic As. Hence, this review focuses on the potential sources of As in the environment, its speciation and toxicity, and tolerance strategies in plants.

Details

ISSN :
18069959 and 01008404
Volume :
44
Database :
OpenAIRE
Journal :
Brazilian Journal of Botany
Accession number :
edsair.doi...........5030217fcfeec3187a38e666388aeba8