Back to Search
Start Over
On generalizations of injective modules
- Source :
- Publications de l'Institut Math?matique (Belgrade). 99:249-255
- Publication Year :
- 2016
- Publisher :
- National Library of Serbia, 2016.
-
Abstract
- As a proper generalization of injective modules in term of supplements, we say that a module M has the property (SE) (respectively, the property (SSE)) if, whenever M ( N, M has a supplement that is a direct summand of N (respectively, a strong supplement in N). We show that a ring R is a left and right artinian serial ring with Rad(R)2 = 0 if and only if every left R-module has the property (SSE). We prove that a commutative ring R is an artinian serial ring if and only if every left R-module has the property (SE).
Details
- ISSN :
- 18207405 and 03501302
- Volume :
- 99
- Database :
- OpenAIRE
- Journal :
- Publications de l'Institut Math?matique (Belgrade)
- Accession number :
- edsair.doi...........509fa99bd688405e87a767840167e26c
- Full Text :
- https://doi.org/10.2298/pim141215014t