Back to Search Start Over

On generalizations of injective modules

Authors :
Burcu Nişancı Türkmen
Source :
Publications de l'Institut Math?matique (Belgrade). 99:249-255
Publication Year :
2016
Publisher :
National Library of Serbia, 2016.

Abstract

As a proper generalization of injective modules in term of supplements, we say that a module M has the property (SE) (respectively, the property (SSE)) if, whenever M ( N, M has a supplement that is a direct summand of N (respectively, a strong supplement in N). We show that a ring R is a left and right artinian serial ring with Rad(R)2 = 0 if and only if every left R-module has the property (SSE). We prove that a commutative ring R is an artinian serial ring if and only if every left R-module has the property (SE).

Details

ISSN :
18207405 and 03501302
Volume :
99
Database :
OpenAIRE
Journal :
Publications de l'Institut Math?matique (Belgrade)
Accession number :
edsair.doi...........509fa99bd688405e87a767840167e26c
Full Text :
https://doi.org/10.2298/pim141215014t