Back to Search
Start Over
Bacterial defences interact synergistically by disrupting phage cooperation
- Publication Year :
- 2023
- Publisher :
- Cold Spring Harbor Laboratory, 2023.
-
Abstract
- SummaryThe constant arms race between bacteria and their phages has resulted in a large diversity of bacterial defence systems1,2, with many bacteria carrying several systems3,4. In response, phages often carry counter-defence genes5–9. If and how bacterial defence mechanisms interact to protect against phages with counter-defence genes remains unclear. Here, we report the existence of a novel defence system, coined MADS (Methylation Associated Defence System), which is located in a strongly conserved genomic defence hotspot inPseudomonas aeruginosaand distributed across Gram-positive and Gram-negative bacteria. We find that the natural co-existence of MADS and a Type IE CRISPR-Cas adaptive immune system in the genome ofP. aeruginosaSMC4386 provides synergistic levels of protection against phage DMS3, which carries an anti-CRISPR (acr) gene. Previous work has demonstrated that Acr-phages need to cooperate to overcome CRISPR immunity, with a first sacrificial phage causing host immunosuppression to enable successful secondary phage infections10,11. Modelling and experiments show that the co-existence of MADS and CRISPR-Cas provides strong and durable protection against Acr-phages by disrupting their cooperation and limiting the spread of mutants that overcome MADS. These data reveal that combining bacterial defences can robustly neutralise phage with counter-defence genes, even if each defence on its own can be readily by-passed, which is key to understanding how selection acts on defence combinations and their coevolutionary consequences.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........514aa8aa488cd498082bddf4b20eedb9
- Full Text :
- https://doi.org/10.1101/2023.03.30.534895