Back to Search Start Over

Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity

Authors :
Sung Su Kim
Jeong Yoon Ahn
Dea Hyun Moon
Woo Jin Chung
Dinh Duc Nguyen
Jung Chul Lee
Kyung Sook Shin
Soon Woong Chang
Yong Joo Cho
Sang Moon Lee
Source :
Fuel. 250:277-284
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Honeycomb-type structured nickel-based catalysts based on the binary oxides TiO2, Al2O3, Y2O3, and CeO2 as supporters of CO2 methanation were successfully synthesized under various conditions by using different coating solutions and characterized. The prepared catalysts were further tested, and their CO2 methanation activity, stability, and selectivity were compared under different operating conditions at varying temperatures. The results revealed better CO2 methanation with an isopropanol-coated liquid than with distilled water, Si binder, and Ludox. Among the synthesized catalysts, the 10 wt% Ni/CeO2 honeycomb-type catalyst showed the highest CO2 methanation catalytic activity, stability, and selectivity, with a CO2 conversion efficiency of more than 80% during testing at an optimal temperature of 298 °C, space velocity of 743 h−1, and catalyst loading of 134 g/L. The optimum parameters and CO2 conversion efficiency were verified and reconfirmed through response surface analysis. The 10 wt% Ni/CeO2 catalyst is a promising catalyst with excellent potential for application in CO2 methanation.

Details

ISSN :
00162361
Volume :
250
Database :
OpenAIRE
Journal :
Fuel
Accession number :
edsair.doi...........520a5a7edd164e2d66afcebab8cbd2c2
Full Text :
https://doi.org/10.1016/j.fuel.2019.03.123