Back to Search Start Over

Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance

Authors :
Ming-Huei Chang
Chong-Ru Ho
Bo Qiu
Barry Ma
Craig M. Lee
Yu-Hsin Cheng
Ren-Chieh Lien
Source :
Journal of Geophysical Research: Oceans. 119:2129-2142
Publication Year :
2014
Publisher :
American Geophysical Union (AGU), 2014.

Abstract

Measurements of Kuroshio Current velocity at the entrance to Luzon Strait along 18.75°N were made with an array of six moorings during June 2012 to June 2013. Strong positive relative vorticity of the order of the planetary vorticity f was observed on the western flank of the Kuroshio in the upper 150 m. On the eastern flank, the negative vorticity observed was about an order of magnitude smaller than f. Kuroshio transport near its origin is computed from direct measurements for the first time. Kuroshio transport has an annual mean of 15 Sv with a standard deviation of 3 Sv. It is modulated strongly by impinging westward propagating eddies, which are identified by an improved eddy detection method and tracked back to the interior ocean. Eight Kuroshio transport anomalies >5 Sv are identified; seven are explained by the westward propagating eddies. Cyclonic (anticyclonic) eddies decrease (increase) the zonal sea level anomaly (SLA) slope and reduce (enhance) Kuroshio transport. Large transport anomalies of >10 Sv within O(10 days) are associated with the pairs of cyclonic and anticyclonic eddies. The observed Kuroshio transport was strongly correlated with the SLA slope (correlation = 0.9). Analysis of SLA slope data at the entrance to Luzon Strait over the period 1992–2013 reveals a seasonal cycle with a positive anomaly (i.e., an enhanced Kuroshio transport) in winter and spring and a negative anomaly in summer and fall. Eddy induced vorticity near the Kuroshio has a similar seasonal cycle, suggesting that seasonal variation of the Kuroshio transport near its origin is modulated by the seasonal variation of the impinging mesoscale eddies.

Details

ISSN :
21699275
Volume :
119
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Oceans
Accession number :
edsair.doi...........5331ac3f493177265bda52487d851776
Full Text :
https://doi.org/10.1002/2013jc009548