Back to Search Start Over

Nonuniform and sequential magnetization reversal via domain structure formation for multilayered system with grain size induced enhanced exchange bias

Authors :
Emmanuel Kentzinger
Daniel E. Bürgler
Ulrich Rücker
Peter Grünberg
Amitesh Paul
Source :
The European Physical Journal B. 45:249-260
Publication Year :
2005
Publisher :
Springer Science and Business Media LLC, 2005.

Abstract

We report on the magnetization reversal in series of exchange-biased multilayers NiFe(10.0 nm)/[ Ir20Mn80(6.0 nm)/Co80Fe20(3.0 nm)] N studied by specular reflection and off-specular scattering of polarized neutrons. All specimens are sputtered and post-annealed at 530 K (i.e. above the IrMn Neel temperature of 520 K) in Ar atmosphere before cooling to room temperature in the presence of a field of 130 Oe which induces the unidirectional anisotropy. We find HEB is dependent upon the number of bilayers N as it gradually increases from 0.33 kOe for N=1 to a considerably higher value of upto ≈0.9 kOe for N=10. X-ray specular and diffuse scattering data reveal no significant variation of the lateral correlation length and only a weak dependence of the vertical rms interface roughness on N. Atomic and magnetic force microscopy, however, show a strong reduction of the grain size accompanied by distinct changes of the ferromagnetic domain structure. The enhancement of the exchange bias effect is presumably related to the shrinking of the related domain size in the antiferromagnet due to the structural evolution in the multilayers. Polarized neutron reflectometry (PNR) measurements are done at different applied fields sweeping both branches of the hysteresis loop. The spin-flip (SF) cross section of both the N=10 and 3 samples show diffusely scattered intensity appears gradually as the field approaches HEB and is most intense where the net magnetization vanishes. The disappearance of diffuse scattering in saturation indicates that the off-specular intensity is related to the reversal process. The reversal proceeds sequentially starting with the bottom (top) CoFe layer for decreasing (increasing) field and is related to the evolution of the grain size along the stack. The reversal of each CoFe layer is for both field branches due to domain wall motion. Thus as a main result, we observe a sequential and symmetric magnetization reversal in exchange-biased multilayers. The concomitant in-plane magnetization fluctuations revealed by off-specular spin-flip scattering indicate a more complex reversal mechanism than hitherto considered. Moreover, although the grain size decreases from N=3 to 10 by a factor of about four the reversal mechanism remains similar.

Details

ISSN :
14346036 and 14346028
Volume :
45
Database :
OpenAIRE
Journal :
The European Physical Journal B
Accession number :
edsair.doi...........533336b78af647728239bc7faf323ef2
Full Text :
https://doi.org/10.1140/epjb/e2005-00056-0