Back to Search
Start Over
Sparse Nonnegative Matrix Factorization Based on a Hyperbolic Tangent Approximation of L0-Norm and Neurodynamic Optimization
- Source :
- ICACI
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- Sparse nonnegative matrix factorization (SNMF) attracts much attention in the past two decades because its sparse and part-based representations are desirable in many machine learning applications. Due to the combinatorial nature of the sparsity constraint in form of l 0 , the problem is hard to solve. In this paper, a hyperbolic tangent function is introduced to approximate the l 0 -norm. A discrete-time neurodynamic approach is developed for solving the proposed formulation. The stability and the convergence behavior are shown for the state vectors. Experiment results are discussed to demonstrate the superiority of the approach. The results show that this approach outperforms other sparse NMF approaches with the smallest relative reconstruction error and the required level of sparsity.
- Subjects :
- Reconstruction error
Norm (mathematics)
Hyperbolic function
MathematicsofComputing_NUMERICALANALYSIS
0202 electrical engineering, electronic engineering, information engineering
Applied mathematics
020206 networking & telecommunications
020201 artificial intelligence & image processing
02 engineering and technology
Hyperbolic tangent function
Non-negative matrix factorization
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2020 12th International Conference on Advanced Computational Intelligence (ICACI)
- Accession number :
- edsair.doi...........5456895ef30654691f2e8f739d06d211
- Full Text :
- https://doi.org/10.1109/icaci49185.2020.9177819