Back to Search Start Over

Aneuploidy effects on human gene expression across three cell types

Authors :
Siyuan Liu
Nirmala Akula
Paul K. Reardon
Jill Russ
Erin Torres
Liv S. Clasen
Jonathan Blumenthal
Francois Lalonde
Francis J. McMahon
Francis Szele
Christine M. Disteche
M. Zameel Cader
Armin Raznahan
Source :
Proceedings of the National Academy of Sciences. 120
Publication Year :
2023
Publisher :
Proceedings of the National Academy of Sciences, 2023.

Abstract

Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited—especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis. We first harness a large LCL RNA-seq dataset from 197 individuals with one of 6 sex chromosome dosages (SCDs: XX, XXX, XY, XXY, XYY, and XXYY) to i) validate theoretical models of SCD sensitivity and ii) define an expanded set of 41 genes that show obligate dosage sensitivity to SCD and are all in cis (i.e., reside on the X or Y chromosome). We then use multiple complementary analyses to show that cis effects of SCD in LCLs are preserved in both FCLs (n = 32) and iNs (n = 24), whereas trans effects (i.e., those on autosomal gene expression) are mostly not preserved. Analysis of additional datasets confirms that the greater cross-cell type reproducibility of cis vs. trans effects is also seen in trisomy 21 cell lines. These findings i) expand our understanding of X, Y, and 21 chromosome dosage effects on human gene expression and ii) suggest that LCLs may provide a good model system for understanding cis effects of aneuploidy in harder-to-access cell types.

Subjects

Subjects :
Multidisciplinary

Details

ISSN :
10916490 and 00278424
Volume :
120
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi...........54b07718b8e4d3d0de90ef795582a64d
Full Text :
https://doi.org/10.1073/pnas.2218478120