Back to Search Start Over

A conceptual ecological model of Florida Bay

Authors :
Joan A. Browder
David T. Rudnick
Peter B. Ortner
Steven M. Davis
Source :
Wetlands. 25:870-883
Publication Year :
2005
Publisher :
Springer Science and Business Media LLC, 2005.

Abstract

Florida Bay is a large and shallow estuary that is linked to the Everglades watershed and is a target of the Greater Everglades ecosystem restoration effort. The conceptual ecological model presented here is a qualitative and minimal depiction of those ecosystem components and linkages that are considered essential for understanding historic changes in the bay ecosystem, the role of human activities as drivers of these changes, and how restoration efforts are likely to affect the ecosystem in the future. The conceptual model serves as a guide for monitoring and research within an adaptive management framework. Historic changes in Florida Bay that are of primary concern are the occurrence of seagrass mass mortality and subsequent phytoplankton blooms in the 1980s and 1990s. These changes are hypothesized to have been caused by long-term changes in the salinity regime of the bay that were driven by water management. However, historic ecological changes also may have been influenced by other human activities, including occlusion of passes between the Florida Keys and increased nutrient loading. The key to Florida Bay restoration is hypothesized to be seagrass community restoration. This community is the central ecosystem element, providing habitat for upper trophic level species and strongly influencing productivity patterns, sediment resuspension, light penetration, nutrient availability, and phytoplankton dynamics. An expectation of Everglades restoration is that changing patterns of freshwater flow toward more natural patterns will drive Florida Bay’s structure and function toward its pre-drainage condition. However, considerable uncertainty exists regarding the indirect effects of changing freshwater flow, particularly with regard to the potential for changing the export of dissolved organic matter from the Everglades and the fate and effects of this nutrient source. Adaptive management of Florida Bay, as an integral part of Everglades restoration, requires an integrated program of monitoring, research to decrease uncertainties, and development of quantitative models (especially hydrodynamic and water quality) to synthesize data, develop and test hypotheses, and improve predictive capabilities. Understanding and quantitatively predicting changes in the nature of watershed-estuarine linkages is the highest priority scientific need for Florida Bay restoration.

Details

ISSN :
19436246 and 02775212
Volume :
25
Database :
OpenAIRE
Journal :
Wetlands
Accession number :
edsair.doi...........550a1a769de71d3e3983fc8dfba4718e
Full Text :
https://doi.org/10.1672/0277-5212(2005)025[0870:acemof]2.0.co;2