Back to Search Start Over

On ultra wideband channel modeling for in-body communications

Authors :
Raul Chavez-Santiago
Ilangko Balasingham
Xuedong Liang
Tor A. Ramstad
Ali Khaleghi
Victor C. M. Leung
Source :
IEEE 5th International Symposium on Wireless Pervasive Computing 2010.
Publication Year :
2010
Publisher :
IEEE, 2010.

Abstract

Innovative medical applications such as implant wireless sensors for health monitoring, automatic drug deliverance, etc. can be realized with the use of ultra wideband (UWB) radio technology. Nevertheless, for efficient design of wireless systems operating inside the human body a radio communication channel model is essential. Although a lot of research effort has recently been devoted to the characterization of the on-body UWB radio communication channel, just a few works describing the radio propagation inside the human body have been reported. To address this problem, a computational study of the propagation of UWB signals through human tissues in the 0.1–1 GHz and 1–6 GHz frequency bands is presented in this paper. This is based on numerical simulations using a heterogeneous anatomical model of the human body with frequency dependent tissue material properties. Subsequently, a statistical channel model is introduced for UWB in-body communications in the 1–6 GHz frequency band. The model is provided for two typical depths inside the human chest. This work contributes to the practical design of UWB medical implant communication systems.

Details

Database :
OpenAIRE
Journal :
IEEE 5th International Symposium on Wireless Pervasive Computing 2010
Accession number :
edsair.doi...........557927909d4f741a09babea956adacf7
Full Text :
https://doi.org/10.1109/iswpc.2010.5483804