Back to Search Start Over

Stability theorem for spatial quasiconformal deformations

Authors :
Jukka Sarvas
Source :
Complex Analysis — Fifth Romanian-Finnish Seminar ISBN: 9783540126829
Publication Year :
1983
Publisher :
Springer Berlin Heidelberg, 1983.

Abstract

Let G C R rL be a domain, n~ 2. A continuous function f:G --~ R m is called a quasiconformal deformation, abbreviated qc-deformation or qcd, if it has locally integrable first order distributional derivatives in G and llSfll = ess sup x~G llSf(x)ll ~o. Here S is Ahlfors' differential operator Sf(x) = (I/2)(Df(x)+Df(x)) (1/n)tr(Df(x))I where Df(x) is the Jacobian matrix of f, I is the unit matrix, A denotes the transpose and tr(A) the trace of an n~n-matrix A. The norm liA~i is the operator R n norm IIAIL = sup IAxl x E If ilSfll~ ~ k ~ 3, every trivial deformation f:G -~ R n is a restriction to G of a mapping which has the form

Details

ISBN :
978-3-540-12682-9
ISBNs :
9783540126829
Database :
OpenAIRE
Journal :
Complex Analysis — Fifth Romanian-Finnish Seminar ISBN: 9783540126829
Accession number :
edsair.doi...........58bc18193d4619750da2b412fe66dbaa
Full Text :
https://doi.org/10.1007/bfb0066530