Back to Search
Start Over
Stability theorem for spatial quasiconformal deformations
- Source :
- Complex Analysis — Fifth Romanian-Finnish Seminar ISBN: 9783540126829
- Publication Year :
- 1983
- Publisher :
- Springer Berlin Heidelberg, 1983.
-
Abstract
- Let G C R rL be a domain, n~ 2. A continuous function f:G --~ R m is called a quasiconformal deformation, abbreviated qc-deformation or qcd, if it has locally integrable first order distributional derivatives in G and llSfll = ess sup x~G llSf(x)ll ~o. Here S is Ahlfors' differential operator Sf(x) = (I/2)(Df(x)+Df(x)) (1/n)tr(Df(x))I where Df(x) is the Jacobian matrix of f, I is the unit matrix, A denotes the transpose and tr(A) the trace of an n~n-matrix A. The norm liA~i is the operator R n norm IIAIL = sup IAxl x E If ilSfll~ ~ k ~ 3, every trivial deformation f:G -~ R n is a restriction to G of a mapping which has the form
- Subjects :
- Discrete mathematics
Quantum chromodynamics
Quasiconformal mapping
010102 general mathematics
Essential supremum and essential infimum
Differential operator
First order
01 natural sciences
010104 statistics & probability
symbols.namesake
Transpose
Jacobian matrix and determinant
symbols
0101 mathematics
Stability theorem
Mathematics
Subjects
Details
- ISBN :
- 978-3-540-12682-9
- ISBNs :
- 9783540126829
- Database :
- OpenAIRE
- Journal :
- Complex Analysis — Fifth Romanian-Finnish Seminar ISBN: 9783540126829
- Accession number :
- edsair.doi...........58bc18193d4619750da2b412fe66dbaa
- Full Text :
- https://doi.org/10.1007/bfb0066530