Back to Search Start Over

On bounding the absolute mean value

Authors :
V. Papathanasiou
Veni Arakelian
Source :
Statistics & Probability Letters. 69:447-450
Publication Year :
2004
Publisher :
Elsevier BV, 2004.

Abstract

A well-known bound for the absolute value of the mean a function g ( X ) of a random variable X , | E ( g ( X ) ) | , is E ( g ( X ) ) 2 . Here, we use a sharper bound of Cauchy's inequality, proved by Hovenier (J. Math. Appl. 186 (1994) 156–160), to give upper bounds for the absolute of mean value, | E ( g ( X ) ) | . Some examples for particular distributions are also provided.

Details

ISSN :
01677152
Volume :
69
Database :
OpenAIRE
Journal :
Statistics & Probability Letters
Accession number :
edsair.doi...........59071d1d16f5361af120f5272051f8f9
Full Text :
https://doi.org/10.1016/j.spl.2004.06.037