Back to Search
Start Over
Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications
- Source :
- Vacuum. 195:110667
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Thermal insulation materials are crucial to improve the energy performance of buildings and industrial applications. We report an approach to create hermetically vacuum-sealed silica-based hollow microspheres that can lower the thermal conductivity of closed-cell insulation materials. The wall structure of these hollow microspheres includes a reticulated network of pores or channels that extend through the thickness of the wall. When a thin layer of glass material is applied to the wall exterior, followed by a vacuum-assisted thermal treatment process, the coated microsphere surfaces display a highly dense conformal coverage and near-complete elimination of surface porosity. The sealing efficiency of these microspheres is verified by trapping argon within their cavities as well as through evacuating their hollow cores. Notably, incorporating the evacuated microspheres into a polymer matrix resulted in ∼27% enhancement in its thermal insulation performance and no notable loss of performance was observed following three months of exposure to ambient conditions. Thus, we believe that the present study offers a commercially viable strategy that opens the door to applications of such inorganic hollow particles in areas ranging from vacuum-based thermal insulation systems to catalysis, separation technologies, and medical fields.
- Subjects :
- chemistry.chemical_classification
Argon
Materials science
business.industry
Energy performance
chemistry.chemical_element
Thermal treatment
Polymer
Condensed Matter Physics
Surfaces, Coatings and Films
Microsphere
Thermal conductivity
chemistry
Thermal insulation
Composite material
business
Porosity
Instrumentation
Subjects
Details
- ISSN :
- 0042207X
- Volume :
- 195
- Database :
- OpenAIRE
- Journal :
- Vacuum
- Accession number :
- edsair.doi...........5a678e62fb23ef6748fd2be54a9db169
- Full Text :
- https://doi.org/10.1016/j.vacuum.2021.110667