Back to Search
Start Over
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
- Source :
- International Journal of Numerical Methods for Heat & Fluid Flow. 30:4811-4836
- Publication Year :
- 2020
- Publisher :
- Emerald, 2020.
-
Abstract
- Purpose Natural convection heat transfer analysis can be completed using entropy generation analysis. This study aims to accomplish both the natural convection heat transfer and entropy generation analyses for a hexagonal cavity loaded with Cu-H2O nanoliquid subjected to an oriented magnetic field. Design/methodology/approach Control volume-based finite element method is applied to solve the non-dimensional forms of governing equations and then, the entropy generation number is computed. Findings The results portray that both the average Nusselt and entropy generation numbers boost with increasing aspect ratio for each value of the undulation number, while both of them decrease with increasing the undulation number for each amplitude parameter. There is a maximum value for the entropy generation number at a specified value of Hartmann number. Also, there is a minimum value for the entropy generation number at a specified value of angle of the magnetic field. When the volume fraction of nanoparticles grows, the average Nusselt number increases and the entropy generation number declines. The entropy generation number attains to a maximum value at Ha = 14 for each value of aspect ratio. The average Nusselt number ascends 2.9 per cent and entropy generation number decreases 1.3 per cent for Ha = 0 when ϕ increases from 0 to 4 per cent. Originality/value A hexagonal enclosure (complex geometry), which has many industrial applications, is chosen in this study. Not only the characteristics of heat transfer are investigated but also entropy generation analysis is performed in this study. The ecological coefficient of performance for enclosures is calculated, too.
- Subjects :
- Physics
0209 industrial biotechnology
Natural convection
Applied Mathematics
Mechanical Engineering
Enclosure
02 engineering and technology
Mechanics
Coefficient of performance
021001 nanoscience & nanotechnology
Hartmann number
Nusselt number
Computer Science Applications
Entropy (classical thermodynamics)
020901 industrial engineering & automation
Nanofluid
Mechanics of Materials
Heat transfer
0210 nano-technology
Subjects
Details
- ISSN :
- 09615539
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- International Journal of Numerical Methods for Heat & Fluid Flow
- Accession number :
- edsair.doi...........5bc8633e76410fa0c6802e33a443ea4f