Back to Search Start Over

In situ study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system

Authors :
Yeon-Ju Kim
Dong-Yu Kim
Aram Amassian
Jin-Mun Yun
Rira Kang
Ming-Chung Tang
Dounya Barrit
Sehyun Lee
Detlef-M. Smilgies
Rahim Munir
Source :
Journal of Materials Chemistry A. 8:7695-7703
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

As a coating method compatible with printing, one-step spin-coating is widely used for fabricating perovskite thin films. Controlling the crystal growth rate of two precursors is essential to obtain a homogeneous film morphology. However, the film formation mechanism and role of solvate systems during spin-coating have not yet been clearly revealed. In this work, we implemented the in situ grazing incidence wide-angle X-ray scattering of CH3NH3PbI3 perovskite material based on various additive systems to adjust the unbalanced crystal growth rate of CH3NH3I and PbI2. As we expected, the behavior of the solvate phase was strikingly mediated by various additives, and one of the additives greatly slowed the PbI2 solvate phase, thus overcoming the imbalance in the crystal growth rate. Consequently, the well-controlled perovskite films have both good film morphology and high photovoltaic performance with excellent reproducibility.

Details

ISSN :
20507496 and 20507488
Volume :
8
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........5bc97d2d20e9c4300b1f0bf6c03d70cc