Back to Search Start Over

Abstract 2018: Discovery of potent dual inhibitors of both XIAP and cIAP1 using fragment based drug discovery

Authors :
Ildiko Maria Buck
George Ward
Martyn Frederickson
Alison Jo-Anne Woolford
Pamela A. Williams
Neil Thompson
Tomoko Smyth
Christopher N. Johnson
Aman Iqbal
Caroline Richardson
Nicola E. Wilsher
Elisabetta Chiarparin
Gianni Chessari
Emiliano Tamanini
Vanessa Martins
James Edward Harvey Day
Tom D. Heightman
Jon Lewis
Glyn Williams
Petra Hillmann
Keisha Hearn
Source :
Cancer Research. 72:2018-2018
Publication Year :
2012
Publisher :
American Association for Cancer Research (AACR), 2012.

Abstract

XIAP and cIAP1 are members of the inhibitor of apoptosis (IAP) protein family. Both proteins have the ability to attenuate apoptosis induced through intrinsic and extrinsic stimuli via inhibition of caspase-3, -7, -8 and -9. The defining feature of both XIAP and cIAP1 is the presence in their protein sequence of 3 Baculoviral IAP Repeat (BIR) domains, which are necessary for their antiapoptotic activity. The mitochondrial protein SMAC uses its N-terminal region (AVPI) to interact with BIR domains and deactivate the antiapoptotic function of IAPs. Several companies and academic groups have active programs developing SMAC peptidomimetic compounds based on the AVPI motif. In general, those compounds have the tendency to be cIAP1 selective like their tetrapeptide progenitor (AVPI IC50 values for XIAP-BIR3 and cIAP1-BIR3 are 0.3 uM and 0.016 uM respectively). Using our fragment-based screening approach, PyramidTM, we identified a non-peptidomimetic chemotype which binds with similar potency to the BIR3 domain of both XIAP and cIAP1. Hit optimisation using a structure based approach led to the discovery of potent true dual XIAP and cIAP1 antagonists with good in vivo physico-chemical profile and no P450 or hERG liabilities. Dual XIAP/cIAP1 inhibitors have potential for more effective apoptosis and less toxicity associated with cytokine production. Compounds were initially characterised in fluorescence polarisation binding assays using XIAP-BIR3 or cIAP1-BIR3 domains. Robust induction of apoptosis was observed in two sensitive breast cancer cell lines (EC50s well below 0.1 uM in EVSA-T and MDA-MB-231); whilst HCT116 cells (colon cancer) were insensitive (unless exogenous TNF-α was added). This in vitro cell line killing was demonstrated to correlate closely with cIAP1 antagonism and hence a parallel cell assay was established to measure XIAP antagonism. An engineered HEK293 cell line was stably co-transfected with full length FLAG-tagged human XIAP cDNA and full length (untagged) human caspase-9 cDNA. Inhibition of caspase-9 binding to XIAP was measured in immunoprecipitation assays. This gave us a sensitive read-out for XIAP antagonism in cells which could be plotted against the most sensitive cell killing read-out (from the EVSA-T cell line) to establish relative XIAP vs cIAP1 selectivities and to select dual antagonists of both IAPs. Potent compounds (HEK293-EC50 Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2018. doi:1538-7445.AM2012-2018

Details

ISSN :
15387445 and 00085472
Volume :
72
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........5ce67885610994ed245d2255ba1936dc
Full Text :
https://doi.org/10.1158/1538-7445.am2012-2018