Back to Search
Start Over
Allogeneic Anti-CD19 CAR T Cells Manufactured from Healthy Donors Provide a Unique Cellular Product with Distinct Phenotypic Characteristics Compared to CAR T Cells Generated from Patients with Mature B Cell Malignancies
- Source :
- Blood. 134:3228-3228
- Publication Year :
- 2019
- Publisher :
- American Society of Hematology, 2019.
-
Abstract
- Despite the success of autologous anti-CD19 CAR T cell therapy in B-Acute lymphoblastic leukaemia (B-ALL) and Diffuse Large B Cell Lymphoma (DLBCL), treatment failures occur. One contributing factor may be the intrinsic T cell fitness of the CAR T cell product that is influenced by the underlying malignancy and prior treatments. With the advent of gene editing, 'off the shelf' non-HLA matched healthy donor (HD) CAR T cells are under investigation for the treatment of patients (pts) in clinical trials. UCART19 (S68587) is a first-in-class allogeneic CAR T cell product expressing a second generation anti-CD19 CAR with TALEN®-mediated gene knockouts of T cell receptor alpha chain (TRAC) and CD52 to prevent graft versus host disease and to render them resistant to anti-CD52 antibody used for lymphodepletion. Preliminary clinical trial data on the use of UCART19 in B-ALL was previously reported at ASH (Benjamin et al, 2018). The phenotypic and functional characteristics of CAR T cell products manufactured from B-ALL, Chronic Lymphocytic Leukaemia (CLL) and DLBCL pts were compared to young adult healthy donor (HD) CAR T cell products. In addition, potential effects related to knocking out TRAC in HD TCR-CAR T cells were examined. Thawed PBMCs from B-ALL, CLL, DLBCL pts and HDs underwent T cell enrichment, activation with anti-CD3/CD28 beads and IL-2, followed by transduction with anti-CD19 4-1BB CD3ζ lentiviral CAR construct and expansion. HD TCR- CAR T cells were manufactured by electroporation of HD CAR T cells with mRNA coding for TRAC TALEN® and residual TCRαβ+cells were removed by magnetic bead selection. CAR expression levels, T cell subsets, and exhaustion markers were examined by flow cytometry. Expression of activation markers CD25 and CD69 was measured in response to co-culture with the CD19+cell line NALM-6. Cytotoxicity against NALM-6 and Raji was assessed and antigen-mediated proliferation measured over 14 days. HD CAR T cells (n=11) expanded significantly more during manufacture than CAR T cells derived from B-ALL (n=9), CLL (n=8) or DLBCL (n=8) pts. As expected, the electroporation step resulted in a transient decrease in viability which recovered over time in culture (n=10). Median CAR expression level was higher on CLL CAR T cell products compared to those from B-ALL pts and HDs, thought to be due to a higher CD4:CD8 ratio in some CLL products. As a consequence of TCR knockout, CD3 expression was lost on HD TCR- CAR T cells (n=10), apart from a small population of γδ CAR T cells. CLL and DLBCL CD8+CAR+cells expressed higher levels of PD1 than HD CD8+CAR+cells. DLBCL CD4+CAR+cells also expressed significantly higher levels of PD1 than HD or HD TCR-CD4+CAR+T cells. CAR+CD8+CD27+PD1- T cells have been previously described as a functionally important population that correlated with clinical outcome in pts who received CLL CAR T cells (Fraietta et al, 2018). We found HD (n=13) and HD TCR- (n=10) CAR T cells had significantly more CD8+CD27+PD1- CAR T cells compared to those derived from CLL (n=8) and DLBCL (n=6) pts, but similar levels to B-ALL pts (n=10). In the absence of CD19 antigen, DLBCL CAR+CD8+ T cells (n=6) had greater expression of CD25 and CD69. However, in response to stimulation with CD19+ NALM-6 cells, HD (n=12), HD TCR- (n=10) and B-ALL (n=10) CAR T cells had higher fold increase in CD69+ cells compared to DLBCL (n=6) CAR T cells. On paired analysis (n=6), no difference was seen in activation in response to CD19 antigen on HD compared to HD TCR- CAR T cells. All CAR T cell products demonstrated comparable cytotoxicity against NALM-6 and Raji cell lines in short term in vitro assays. However, long-term cytotoxicity will be evaluated in a murine model. We performed a detailed comparison of the phenotypic and functional characteristics of CAR T cells derived from pts with B-cell malignancies and HDs. DLBCL CAR T cells showed lower antigen specific activation but higher baseline activation which could lead to more differentiated exhausted T cells. CAR T cells derived from HDs show a higher proportion of the therapeutically relevant CAR+CD8+CD27+PD1- cells compared to patients with mature B cell malignancies (CLL and DLBCL), which is maintained after TRAC knockout. This suggests allogeneic CAR T cells, such as UCART19, may provide a more effective product for pts with T cell dysfunction. Disclosures Graham: Gillead: Other: Funding to attend educational meeting; Servier: Research Funding. Jozwik:Servier: Research Funding. Metelo:Pfizer: Research Funding; Allogene: Research Funding. Almena-Carrasco:Servier: Employment. Peranzoni:Servier: Employment. Ramsay:Celgene Corporation: Research Funding; Roche Glycart AG: Research Funding. Dupouy:Servier: Employment. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Patten:Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Roche: Honoraria, Research Funding. Benjamin:Amgen: Honoraria; Allogene: Research Funding; Gilead: Honoraria; Servier: Research Funding; Eusapharm: Consultancy; Pfizer: Research Funding; Takeda: Honoraria; Novartis: Honoraria.
Details
- ISSN :
- 15280020 and 00064971
- Volume :
- 134
- Database :
- OpenAIRE
- Journal :
- Blood
- Accession number :
- edsair.doi...........5e201c5f04b263bd6e78d23b912e157b