Back to Search Start Over

Ultrasonic-assisted plastic flow in a Zr-based metallic glass

Authors :
Baolong Shen
Can Yang
Weihua Wang
Changmeng Pang
Haibo Ke
Jiang Ma
Zhuwei Lv
C.C. Yuan
Xin Li
Rui Liu
Source :
Science China Materials. 64:448-459
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Ultrasonic vibration can be used for the micro-molding of metallic glasses (MGs) due to stress-softening and fast surface-diffusion effects. However, the structural rearrangement under ultrasonic vibration and its impact on the mechanical response of metallic glasses remain a puzzle. In this work, the plastic flow of the Zr35Ti30Cu8.25Be26.75 metallic glass with the applied ultrasonic-vibration energy of 140 J was investigated by nanoindentation. Both Kelvin and Maxwell-Voigt models have been adopted to analyze the structural evolution during the creep deformation. The increase of the characteristic relaxation time and the peak intensity of relaxation spectra can be found in the sample after ultrasonic vibration. It effectively improves the activation energy of atomic diffusion during the glass transition ( E g) and the growth of the crystal nucleus ( E p). A more homogenous plastic deformation with a weak loading-rate sensitivity of stress exponent is observed in the ultrasonic-vibrated sample, which coincides with the low pile-up and penetration depth as shown in the cross profile of indents. The structural rearrangement under resonance actuation demonstrated in this work might help us better understand the defect-activation mechanism for the plastic flow of amorphous systems.

Details

ISSN :
21994501 and 20958226
Volume :
64
Database :
OpenAIRE
Journal :
Science China Materials
Accession number :
edsair.doi...........5ed0907e467f1a8b952e3525b85d61b2
Full Text :
https://doi.org/10.1007/s40843-020-1411-2