Back to Search Start Over

On the interior regularity criteria and the number of singular points to the Navier-Stokes equations

Authors :
Wendong Wang
Zhifei Zhang
Source :
Journal d'Analyse Mathématique. 123:139-170
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

We establish some interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations which allow the vertical part of the velocity to be large under the local scaling invariant norm. As an application, we improve Ladyzhenskaya-Prodi-Serrin’s criterion and Escauriza-Seregin-Sverak’s criterion. We also show that if a weak solution u satisfies $$\left\| {u( \cdot ,t)} \right\|_{L^p } \leqslant C( - t)^{(3 - p)/2p} $$ for some 3 < p < ∞, then the number of singular points is finite.

Details

ISSN :
15658538 and 00217670
Volume :
123
Database :
OpenAIRE
Journal :
Journal d'Analyse Mathématique
Accession number :
edsair.doi...........5fdef2b252f83e428daa82f39c6e3147
Full Text :
https://doi.org/10.1007/s11854-014-0016-7