Back to Search Start Over

Galois Field Arithmetic Over<tex>$GF(p^m)$</tex>For High-Speed/ Low-Power Error-Control Applications

Authors :
Thomas Conway
Source :
IEEE Transactions on Circuits and Systems I: Regular Papers. 51:709-717
Publication Year :
2004
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2004.

Abstract

This paper presents a very large-scale integration implementation of Galois field arithmetic for high-speed error-control coding applications that is based on the field GF(p/sup m/) with m a small integer such as 2 or 3 and p a prime of sufficient value to generate the required field size. In this case, the Galois field arithmetic operations of addition, multiplication, and inversion are based on architectures using blocks that perform integer arithmetic modulo p. These integer arithmetic operations modulo p have previously been implemented with low delay power products through the use of one hot coding and barrel shifters circuits based on transistor arrays. In this paper, the same one hot coding and barrel shifters circuits are used to construct circuits that implement addition, multiplication, and inversion over GF(p/sup m/). The circuits for GF(p/sup m/) addition and multiplication with p/spl ne/2, achieve a lower power-delay product than designs based on GF(2/sup m/). Also, the architecture for GF(p/sup m/) inversion can be efficiently implemented when m=2 or m=3.

Details

ISSN :
10577122
Volume :
51
Database :
OpenAIRE
Journal :
IEEE Transactions on Circuits and Systems I: Regular Papers
Accession number :
edsair.doi...........62f25fd4c71141062eeec021b0209a4d
Full Text :
https://doi.org/10.1109/tcsi.2004.823659