Back to Search Start Over

Imitation Refinement for X-ray Diffraction Signal Processing

Authors :
Junwen Bai
Yexiang Xue
Zihang Lai
Carla P. Gomes
John M. Gregoire
Runzhe Yang
Source :
ICASSP
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.

Details

Database :
OpenAIRE
Journal :
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Accession number :
edsair.doi...........641c6d99a2bd8484a7956f49c47218cd
Full Text :
https://doi.org/10.1109/icassp.2019.8683723