Back to Search
Start Over
Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere (Ex-LMS): Insights into transport pathways and total bromine
- Publication Year :
- 2021
- Publisher :
- Copernicus GmbH, 2021.
-
Abstract
- We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere (UTLS) taken from the German High Altitude and LOng range research aircraft (HALO) over the North Atlantic, Norwegian Sea and north-western Europe in September/ October 2017 during the WISE (Wave-driven ISentropic Exchange) research campaign. Brtot is calculated from measured total organic bromine (Brorg) (i.e., the sum of bromine contained in CH3Br, the halons and the major very short-lived brominated substances) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modelling. Combining these data, the weighted mean [Brtot] is 19.2 ± 1.2 ppt in the extratropical lower stratosphere (Ex-LS) of the northern hemisphere. The inferred average Brtot for the Ex-LS is slightly smaller than expected for the middle stratosphere in 2016 (~19.6 ppt (ranging from 19-20 ppt) as reported by the WMO/UNEP Assessment (2018)). However, it reflects the expected variability in Brtot in the Ex-LS due to influxes of shorter lived brominated source and product gases from different regions of entry. A closer look into Brorg and Bryinorg as well as simultaneously measured transport tracers (CO, N2O, ...) and an air mass lag-time tracer (SF6), suggests that a filament of air with elevated Brtot protruded into the extratropical lowermost stratosphere (Ex-LMS) from 350-385 K and between equivalent latitudes of 55-80˚N (high bromine filament – HBrF). Lagrangian transport modelling shows the multi-pathway contributions to Ex-LMS bromine. According to CLaMS air mass origin simulations, contributions to the HBrF consist of predominantly isentropic transport from the tropical troposphere (also with elevated [Brtot] = 21.6 ± 0.7 ppt) as well as a smaller contribution from an exchange across the extratropical tropopause which are mixed into the stratospheric background air. In contrast, the surrounding LS above and below the HBrF has less tropical tropospheric air, but instead additional stratospheric background air. Of the tropical tropospheric air in the HBrF, the majority is from the outflow of the Asian monsoon anticyclone and the adjacent tropical regions, which greatly influences concentrations of trace gases transported into the Ex-LMS in boreal summer and fall. The resulting increase of Brtot in the Ex-LMS and its consequences for ozone is investigated through the TOMCAT/SLIMCAT model simulations. However, more extensive monitoring of total stratospheric bromine in more aged air (i.e., in the middle stratosphere) as well as globally and seasonally is required in addition to model simulations to fully understand its impact on Ex-LMS ozone and the radiative forcing of climate.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........648b1d5e991a704be4c0b68d2ba013eb
- Full Text :
- https://doi.org/10.5194/egusphere-egu21-10873