Back to Search Start Over

Fractional integral operators involving extended Mittag–Leffler function as its Kernel

Authors :
Praveen Agarwal
Gauhar Rahman
Shahid Mubeen
Muhammad Arshad
Source :
Boletín de la Sociedad Matemática Mexicana. 24:381-392
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

This paper is devoted to the study of fractional calculus with an integral and differential operators containing the following family of extended Mittag–Leffler function: $$\begin{aligned} E_{\alpha ,\beta }^{\gamma ;c}(z; p)=\sum \limits _{n=0}^{\infty }\frac{B_p(\gamma +n, c-\gamma )(c)_{n}}{B(\gamma , c-\gamma )\Gamma (\alpha n+\beta )}\frac{z^n}{n!}, (z,\beta , \gamma \in \mathbb {C}), \end{aligned}$$ in its kernel. Also, we further introduce a certain number of consequences of fractional integral and differential operators containing the said function in their kernels.

Details

ISSN :
22964495 and 1405213X
Volume :
24
Database :
OpenAIRE
Journal :
Boletín de la Sociedad Matemática Mexicana
Accession number :
edsair.doi...........66b936450af426e4a214dfd38160a7b6