Back to Search
Start Over
Fractional integral operators involving extended Mittag–Leffler function as its Kernel
- Source :
- Boletín de la Sociedad Matemática Mexicana. 24:381-392
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- This paper is devoted to the study of fractional calculus with an integral and differential operators containing the following family of extended Mittag–Leffler function: $$\begin{aligned} E_{\alpha ,\beta }^{\gamma ;c}(z; p)=\sum \limits _{n=0}^{\infty }\frac{B_p(\gamma +n, c-\gamma )(c)_{n}}{B(\gamma , c-\gamma )\Gamma (\alpha n+\beta )}\frac{z^n}{n!}, (z,\beta , \gamma \in \mathbb {C}), \end{aligned}$$ in its kernel. Also, we further introduce a certain number of consequences of fractional integral and differential operators containing the said function in their kernels.
- Subjects :
- Kernel (set theory)
Astrophysics::High Energy Astrophysical Phenomena
General Mathematics
010102 general mathematics
Mathematical analysis
Function (mathematics)
Fractional differential operator
Differential operator
01 natural sciences
Fractional calculus
010101 applied mathematics
Combinatorics
symbols.namesake
Mittag-Leffler function
symbols
Beta (velocity)
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 22964495 and 1405213X
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- Boletín de la Sociedad Matemática Mexicana
- Accession number :
- edsair.doi...........66b936450af426e4a214dfd38160a7b6