Back to Search Start Over

A single von Willebrand factor C-domain protein acts as an extracellular pattern-recognition receptor in the river prawn Macrobrachium nipponense

Authors :
Fengsong Liu
Jianhui Wang
Meike Lu
Ting Tang
Nan Qin
Hehe Sun
Source :
Journal of Biological Chemistry. 295:10468-10477
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

The single von Willebrand factor C-domain proteins (SVWCs) are mainly found in arthropods. Their expression may be regulated by several environmental stresses, including nutritional status and bacterial and viral infections. However, the underlying regulatory mechanism is unclear. In the present study, we identified a member of the SVWC family from the river prawn Macrobrachium nipponense as a soluble and bacteria-inducible pattern-recognition receptor (designated MnSVWC). In vitro, recombinant MnSVWC exhibited pronounced binding and Ca2+-dependent agglutinating abilities against diverse microbes, including Gram-negative bacteria (i.e. Escherichia coli and Aeromonas victoria), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), and yeast (Pichia pastoris). ELISA assays revealed that recombinant MnSVWC recognizes a broad range of various pathogen-associated molecular patterns (PAMPs) and has high affinity to lipopolysaccharide and lysine-type and diaminopimelic acid-type peptidylglycan and d-galactose and low affinity to d-mannan and β-1,3-glucan. Mutant MnSVWCP57A with an impaired Glu-Pro-Asn (EPN) motif displayed reduced affinity to all these PAMPs to varying extent. Moreover, MnSVWC bound to the surface of hemocytes and promoted their phagocytic activity and clearance of invasive bacteria. RNAi-mediated MnSVWC knockdown in prawn reduced the ability to clear invading bacteria, but did not block the activities of the Toll pathway or the arthropod immune deficiency (IMD) pathway, or the expression of antimicrobial peptide genes. These results indicate that MnSVWC functions as an extracellular pattern-recognition receptor in M. nipponense that mediates cellular immune responses by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis in hemocytes.

Details

ISSN :
00219258
Volume :
295
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi...........67f832c458a06667e14af102087ff4c1