Back to Search Start Over

LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries

Authors :
Yadong Li
Li Wang
Xiangfeng Liu
Xiaoling Xiao
Xiangming He
Zhongbo Hu
Hu Zhao
Source :
Nano Research. 5:395-401
Publication Year :
2012
Publisher :
Springer Science and Business Media LLC, 2012.

Abstract

We report the synthesis of near-uniform LiCoO2 nanoplates by a two-step approach in which β-Co(OH)2 nanoplates are synthesized by co-precipitation and then transformed into LiCoO2 nanoplates by solid state reaction at 750 °C for 3 hours. Characterization by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED) reveal that the as-prepared LiCoO2 nanoplates are covered with many cracks and have exposed (001) planes. The electrochemical performance of the LiCoO2 nanoplates was investigated by galvanostatic tests. The capacity of LiCoO2 nanoplates stabilized at 123 mA·h/g at a rate of 100 mA/g and 113 mA·h/g at a rate of 1000 mA/g after 100 cycles. The excellent rate capability of the LiCoO2 nanoplates results from cracks which are perpendicular to the (001) plane and favor fast Li+ transportation. In addition, compared with other methods of synthesis of LiCoO2 the time of the solid reaction state is significantly shorter even at relatively low temperatures, which means the energy consumption in preparing LiCoO2 is greatly decreased. The controllable synthesis of LiCoO2 nanoplates with exposed (001) plane paves an effective way to develop layered cathode materials with high rate capabilities for use in Li-ion batteries. Open image in new window

Details

ISSN :
19980000 and 19980124
Volume :
5
Database :
OpenAIRE
Journal :
Nano Research
Accession number :
edsair.doi...........694f682bfb180ed33c62bda4b1d9a1fe