Back to Search
Start Over
Maximal estimate and integral operators in Bergman spaces with doubling measure
- Source :
- Proceedings of the American Mathematical Society.
- Publication Year :
- 2023
- Publisher :
- American Mathematical Society (AMS), 2023.
-
Abstract
- The boundedness of the maximal operator on the upper half-plane Π + \Pi ^{+} is established. Here Π + \Pi ^+ is equipped with a positive Borel measure d ω ( y ) d x d\omega (y)dx satisfying the doubling property ω ( ( 0 , 2 t ) ) ≤ C ω ( ( 0 , t ) ) \omega ((0,2t))\leq C\omega ((0,t)) . This result is connected to the Carleson embedding theorem, which we use to characterize the boundedness and compactness of the Volterra type integral operators on the Bergman spaces A ω p ( Π + ) A_{\omega }^{p}(\Pi ^{+}) .
Details
- ISSN :
- 10886826 and 00029939
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi...........69f405eae7c340c3d3f044aa7669e5a7