Back to Search Start Over

Enhanced hydrogen evolution efficiency achieved by atomically controlled platinum deposited on gold nanodendrites with high-index surfaces

Authors :
Yu-Mei Chen
Hsiao-Tzu Chang
Chuan-Yu Wei
Di Yan Wang
I.-Kuan Lin
Cheng-Yen Wen
Chun-Jen Su
Chih-Wen Pao
Yu-Bin Huang
Yen-Ken Li
Shivaraj B. Patil
Jeng-Lung Chen
Swathi M. G
Tsung Rong Kuo
Yi-Chia Chen
Po-Kai Chen
Sin-Ren Li
U-Ser Jeng
Ying-Huang Lai
Hung-Lung Chou
Shu-Yi Chang
Chia-Che Chang
Source :
Journal of Materials Chemistry A. 9:22901-22912
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

There have been several studies on the catalytic activity of the hydrogen evolution reaction (HER) using ultralow loading of Pt catalysts or even Pt single atom catalysts. However, Pt single atom deposited on the surface of the carbon or metal oxide material has some drawbacks, such as high possibility of Pt desorption from the supported material in the electrolyte. Besides, from the reaction mechanism perspective, each Pt atom in this type of catalyst is too far to achieve high HER efficiency via the Tafel reaction pathway. In this work, gold nanodendrites (Au NDs) with high facet surface were chosen as the supported materials for studying the relation between the low loading amount of Pt atoms and the reaction mechanism of the HER activity. The atomic deposition of Pt atoms on the surface of Au NDs can be controlled effectively using a constant-current synthetic method. It was found that the HER electrocatalytic activity of ultralow Pt loading catalyst, with Pt atoms to total surface atoms of Au NDs (O-Pt on Au NDs) of 5.5%, could achieve high efficiency via the Tafel reaction pathway, showing a low overpotential of ∼18 mV at a current density of 10 mA cm−2 and a small Tafel slope of ∼31 mV dec−1, which is close to that of commercial Pt/C with 20 wt% Pt. As confirmed by Inductively Coupled Plasma Mass Spectrometry(ICP-MS), the Pt loading amount of O-Pt on Au NDs was ∼3.8 ± 0.2 μg cm−2 on a physical area of carbon fiber paper. The turnover frequency (TOF) of O-Pt on Au NDs was found to be 40.1 ± 2.5 H2 per s at 50 mV. This work provides a feasible approach to control the atomic deposition of Pt on a specific substrate as an active catalyst for various catalytic applications.

Details

ISSN :
20507496 and 20507488
Volume :
9
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........6a165ab3d39b45efa46448b47a69325a
Full Text :
https://doi.org/10.1039/d1ta07066e