Back to Search
Start Over
Statistical Histogram Decision Based Contrast Categorization of Skin Lesion Datasets Dermoscopic Images
- Source :
- Computers, Materials & Continua. 67:2337-2352
- Publication Year :
- 2021
- Publisher :
- Computers, Materials and Continua (Tech Science Press), 2021.
-
Abstract
- Most of the melanoma cases of skin cancer are the life-threatening form of cancer. It is prevalent among the Caucasian group of people due to their light skin tone. Melanoma is the second most common cancer that hits the age group of 15–29 years. The high number of cases has increased the importance of automated systems for diagnosing. The diagnosis should be fast and accurate for the early treatment of melanoma. It should remove the need for biopsies and provide stable diagnostic results. Automation requires large quantities of images. Skin lesion datasets contain various kinds of dermoscopic images for the detection of melanoma. Three publicly available benchmark skin lesion datasets, ISIC 2017, ISBI 2016, and PH2, are used for the experiments. Currently, the ISIC archive and PH2 are the most challenging and demanding dermoscopic datasets. These datasets’ pre-analysis is necessary to overcome contrast variations, under or over segmented images boundary extraction, and accurate skin lesion classification. In this paper, we proposed the statistical histogram-based method for the pre-categorization of skin lesion datasets. The image histogram properties are utilized to check the image contrast variations and categorized these images into high and low contrast images. The two performance measures, processing time and efficiency, are computed for evaluation of the proposed method. Our results showed that the proposed methodology improves the pre-processing efficiency of 77% of ISIC 2017, 67% of ISBI 2016, and 92.5% of PH2 datasets.
- Subjects :
- 0209 industrial biotechnology
Computer science
media_common.quotation_subject
02 engineering and technology
Biomaterials
020901 industrial engineering & automation
Low contrast
Histogram
0202 electrical engineering, electronic engineering, information engineering
medicine
Contrast (vision)
Electrical and Electronic Engineering
media_common
business.industry
Pattern recognition
medicine.disease
Image contrast
Computer Science Applications
Categorization
Mechanics of Materials
Modeling and Simulation
020201 artificial intelligence & image processing
Artificial intelligence
Skin cancer
Skin lesion
business
Image histogram
Subjects
Details
- ISSN :
- 15462226
- Volume :
- 67
- Database :
- OpenAIRE
- Journal :
- Computers, Materials & Continua
- Accession number :
- edsair.doi...........6b3f68c8e1150ab6cc7b54edb2b17d05