Back to Search Start Over

Solid state amorphization of metastable Al0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

Authors :
Akira Takeuchi
Kenji Amiya
Takeshi Nagase
Takeshi Egami
Source :
Materials Chemistry and Physics. 210:291-300
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The phase stability of high entropy alloy (HEA), Al 0.5 TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c. ) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grain boundaries as a sink for point defects”). SSA behavior in the Al 0.5 TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5 TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5 TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.

Details

ISSN :
02540584
Volume :
210
Database :
OpenAIRE
Journal :
Materials Chemistry and Physics
Accession number :
edsair.doi...........6c212bb06b715137667db77aa498bc08
Full Text :
https://doi.org/10.1016/j.matchemphys.2017.07.071