Back to Search Start Over

Free-electron laser emission architecture impact on EUV lithography

Authors :
Erik R. Hosler
Obert Wood
William A. Barletta
Source :
SPIE Proceedings.
Publication Year :
2017
Publisher :
SPIE, 2017.

Abstract

Laser-produced plasma (LPP) EUV sources have demonstrated approximately 125 W at customer sites, establishing confidence in EUV lithography as a viable manufacturing technology. However, beyond the 7 nm technology node existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multi-patterning (requiring increased wafer throughput proportional to the number of exposure passes. Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should free-electron lasers become the preferred next generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) selfamplified spontaneous emission (SASE), (2) regenerative amplification (RAFEL), or (3) self-seeding (SS-FEL). Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provide a framework for future FEL design and enablement for EUV lithography applications.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi...........6c24e5049a760390bf84f605be5fd65d
Full Text :
https://doi.org/10.1117/12.2260452