Back to Search
Start Over
Further refinements of Young’s type inequality for positive linear maps
- Source :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 115
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- In this work, we give a multiple-term refinement of Young’s inequality which allow us to generalize and unify several results. As applications, we provide further refinements of a reversed AM–GM operator inequalities which extends and unifies two recent and important results due to Yang et al. (Math Slovaca 69:919–930, 2019) and Ren et al. (J Inequal Appl 2020:98, 2020) for positive linear maps and matrices. Also, our work deals with several other related results to both scalar and operator versions of the generalized Young’s inequality. In particular, we give a multiple-term refinement of Young’s inequalities for Hilbert–Schmidt norm, the determinants and the traces of positive definite matrices.
- Subjects :
- Pure mathematics
Algebra and Number Theory
Inequality
Applied Mathematics
media_common.quotation_subject
010102 general mathematics
Scalar (mathematics)
Positive-definite matrix
01 natural sciences
Operator inequality
010101 applied mathematics
Computational Mathematics
Norm (mathematics)
Geometry and Topology
0101 mathematics
Analysis
media_common
Mathematics
Subjects
Details
- ISSN :
- 15791505 and 15787303
- Volume :
- 115
- Database :
- OpenAIRE
- Journal :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
- Accession number :
- edsair.doi...........6cdf24944a7aaa131a9690f2463974df
- Full Text :
- https://doi.org/10.1007/s13398-021-01032-4