Back to Search Start Over

MeV ? proton emission from ultrafast laser-driven microparticles

Authors :
Peter V. Nickles
W. Sandner
S. Busch
M.P. Kalachnikov
S. Ter-Avetisyan
E. Risse
Matthias Schnürer
Source :
Applied Physics B: Lasers and Optics. 78:895-899
Publication Year :
2004
Publisher :
Springer Science and Business Media LLC, 2004.

Abstract

Propagation of a high intensity (∼1019 W/cm2) ultrashort (∼35 fs) laser pulse through a cloud of water spheres (150 nm diameter) results in hot electron driven proton acceleration up to 1 MeV. It is suggested that during the propagation of the short pulse through the low density wing of the cloud, the leading pulse pedestal is reduced owing to absorption by the preplasma created. Then, the high-intensity peak of the pulse propagates through this underdense plasma and interacts with the high-density inner part of the cloud, which has not been transformed into an underdense plasma so that a sheath acceleration process at each individual microsphere can take place. The observed proton spectra show strong modulations, which are interpreted within the framework of a known fluid-expansion model incorporating two hot-electron populations with significantly different densities and temperatures.

Details

ISSN :
14320649 and 09462171
Volume :
78
Database :
OpenAIRE
Journal :
Applied Physics B: Lasers and Optics
Accession number :
edsair.doi...........6cf4d3b5ce9199fe506f438041890749
Full Text :
https://doi.org/10.1007/s00340-004-1433-6