Back to Search Start Over

Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear

Authors :
Sun Qi-Cheng
Zhang Guo-Hua
Zhao Xue-Dan
Dong Yuan-Xiang
Niu Xiao-Na
Source :
Chinese Physics Letters. 32:126201
Publication Year :
2015
Publisher :
IOP Publishing, 2015.

Abstract

We present the numerical simulation results of a model granular assembly formed by spherical particles with Hertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low-frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally.

Details

ISSN :
17413540 and 0256307X
Volume :
32
Database :
OpenAIRE
Journal :
Chinese Physics Letters
Accession number :
edsair.doi...........6ddf6414071a1aa0984b5f30ccef99c3