Back to Search Start Over

Sources of uncertainties in prompt gamma activation analysis

Authors :
Rick L. Paul
David L Anderson
Richard M. Lindstrom
Elizabeth A. Mackey
Source :
Journal of Radioanalytical and Nuclear Chemistry. 265:273-281
Publication Year :
2005
Publisher :
Springer Science and Business Media LLC, 2005.

Abstract

Two prompt gamma-ray activation analysis (PGAA) facilities at the NIST Center for Neutron Research have been used routinely to perform elemental analyses of a variety of materials. Results from these analyses are usually expressed as mass fraction values with expanded uncertainties. The expanded uncertainty consists of the combined uncertainty multiplied by the appropriate coverage factor (k) required to achieve a 95% confidence interval. The combined uncertainty includes the uncertainties associated with preparation, irradiation, and γ-ray spectrometry of samples and standards, and corrections for γ-rays from the background or blanks where necessary. To determine the combined uncertainty, each component of uncertainty associated with each variable and constant in the basic measurement equation is evaluated. In this paper we present the PGAA measurement equation, a description of the potential sources of uncertainty for each component of the equation, and three examples of uncertainty evaluation. The examples are for determination of H in standard reference material (SRM) 2454, hydrogen in titanium alloy using the cold neutron PGAA facility, Cd in SRM 2702 Inorganics in Marine Sediment using the original thermal neutron PGAA facility, and N in SRM 3244 Ephedra-Containing Protein Powder using the recently designed thermal neutron PGAA facility.

Details

ISSN :
15882780 and 02365731
Volume :
265
Database :
OpenAIRE
Journal :
Journal of Radioanalytical and Nuclear Chemistry
Accession number :
edsair.doi...........6e246230fb9294a6a7457fdcecf1698f
Full Text :
https://doi.org/10.1007/s10967-005-0820-8