Back to Search
Start Over
Covalent EGFR Inhibitors: Binding Mechanisms, Synthetic Approaches, and Clinical Profiles
- Source :
- Archiv der Pharmazie. 349:573-593
- Publication Year :
- 2016
- Publisher :
- Wiley, 2016.
-
Abstract
- Being overexpressed in several types of cancer, the epidermal growth factor receptor (EGFR) is considered one of the key therapeutic targets in oncology. Although many first-generation EGFR inhibitors had been FDA approved for the treatment of certain types of cancer, patients soon developed resistance to these reversible ATP competitive inhibitors via mutations in the kinase domain of EGFR. A new trend was adopted to design covalent irreversible inhibitors, that is, second- and third-generation inhibitors. Second-generation inhibitors can inhibit the mutant forms but, unfortunately, they had dose limiting side effects due to wild-type EGFR inhibition. Third-generation inhibitors emerged shortly, which were capable of inhibiting the mutant forms exclusively while sparing the wild type. Many other strategies have also been developed to reduce the risk of covalent interactions with off-targets, thus improving the pharmacokinetic and/or pharmacodynamic profile of the antiproliferative agents. In this review, we focused mainly on second- and third-generation EGFR inhibitors, their binding mechanisms (either docking studies or co-crystallized structures), their synthetic approaches, clinical profiles, and limitations.
- Subjects :
- 0301 basic medicine
biology
Chemistry
Mutant
Wild type
Pharmaceutical Science
Pharmacology
03 medical and health sciences
030104 developmental biology
0302 clinical medicine
Protein kinase domain
Docking (molecular)
Covalent bond
030220 oncology & carcinogenesis
Drug Discovery
Antiproliferative Agents
biology.protein
Epidermal growth factor receptor
EGFR inhibitors
Subjects
Details
- ISSN :
- 03656233
- Volume :
- 349
- Database :
- OpenAIRE
- Journal :
- Archiv der Pharmazie
- Accession number :
- edsair.doi...........6e6d7ad0b2afa33124fae393f134204c
- Full Text :
- https://doi.org/10.1002/ardp.201600063