Back to Search
Start Over
Existence of Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems on the Half-Line
- Source :
- Mediterranean Journal of Mathematics. 13:2353-2364
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- In this paper, we deal with the following nonlinear fractional differential problem in the half-line $${\mathbb{R}^{+}=(0,+ \infty)}$$ $$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$ where $${m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}$$ , the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in $${\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}$$ satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schauder fixed point theorem. Some examples illustrating our main result are also given.
- Subjects :
- Discrete mathematics
General Mathematics
010102 general mathematics
Function (mathematics)
Differential operator
01 natural sciences
010101 applied mathematics
Nonlinear system
Schauder fixed point theorem
Half line
Boundary value problem
0101 mathematics
Fractional differential
Borel measure
Mathematics
Subjects
Details
- ISSN :
- 16605454 and 16605446
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Mediterranean Journal of Mathematics
- Accession number :
- edsair.doi...........6f3857f65e7fce12124c644307d8774e