Back to Search Start Over

Existence of Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems on the Half-Line

Authors :
Zagharide Zine El Abidine
Faten Toumi
Source :
Mediterranean Journal of Mathematics. 13:2353-2364
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

In this paper, we deal with the following nonlinear fractional differential problem in the half-line $${\mathbb{R}^{+}=(0,+ \infty)}$$ $$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$ where $${m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}$$ , the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in $${\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}$$ satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schauder fixed point theorem. Some examples illustrating our main result are also given.

Details

ISSN :
16605454 and 16605446
Volume :
13
Database :
OpenAIRE
Journal :
Mediterranean Journal of Mathematics
Accession number :
edsair.doi...........6f3857f65e7fce12124c644307d8774e