Back to Search Start Over

Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data

Authors :
Ronald J. Wapner
Diana W. Bianchi
Katherine W. Klinger
Wolfgang Holzgreve
Farideh Z. Bischoff
Laird G. Jackson
F. de la Cruz
Joe Leigh Simpson
Kirby L. Johnson
Kimberly A. Dukes
Sinuhe Hahn
Dorothy E. Lewis
Sherman Elias
Lisa M. Sullivan
Mark I. Evans
Source :
Prenatal Diagnosis. 22:609-615
Publication Year :
2002
Publisher :
Wiley, 2002.

Abstract

Objectives The National Institute of Child Health and Human Development Fetal Cell Isolation Study (NIFTY) is a prospective, multicenter clinical project to develop non-invasive methods of prenatal diagnosis. The initial objective was to assess the utility of fetal cells in the peripheral blood of pregnant women to diagnose or screen for fetal chromosome abnormalities. Methods Results of fluorescence in situ hybridization (FISH) analysis on interphase nuclei of fetal cells recovered from maternal blood were compared to metaphase karyotypes of fetal cells obtained by amniocentesis or chorionic villus sampling (CVS). After the first 5 years of the study we performed a planned analysis of the data. We report here the data from 2744 fully processed pre-procedural blood samples; 1292 samples were from women carrying singleton male fetuses. Results Target cell recovery and fetal cell detection were better using magnetic-based separation systems (MACS) than with flow-sorting (FACS). Blinded FISH assessment of samples from women carrying singleton male fetuses found at least one cell with an X and Y signal in 41.4% of cases (95% CI: 37.4%, 45.5%). The false-positive rate of gender detection was 11.1% (95% CI: 6.1,16.1%). This was higher than expected due to the use of indirectly labeled FISH probes in one center. The detection rate of finding at least one aneuploid cell in cases of fetal aneuploidy was 74.4% (95% CI: 76.0%, 99.0%), with a false-positive rate estimated to be between 0.6% and 4.1%. Conclusions The sensitivity of aneuploidy detection using fetal cell analysis from maternal blood is comparable to single marker prenatal serum screening, but technological advances are needed before fetal cell analysis has clinical application as part of a multiple marker method for non-invasive prenatal screening. The limitations of the present study, i.e. multiple processing protocols, are being addressed in the ongoing study. Copyright © 2002 John Wiley & Sons, Ltd.

Details

ISSN :
10970223 and 01973851
Volume :
22
Database :
OpenAIRE
Journal :
Prenatal Diagnosis
Accession number :
edsair.doi...........6f898f17394fc900f9c56a0778a4d390
Full Text :
https://doi.org/10.1002/pd.347