Back to Search Start Over

Co-Infecting Pathogens Can Contribute to Inflammatory Responses and Severe Symptoms in COVID-19

Authors :
Liping Chen
Lihan Shen
Weichen Wu
Wenda Guan
Jinchao Zhou
Gengyan Luo
Qimin Chen
Hongxia Zhou
Zhenxuan Deng
Yao-qing Chen
Wen-jing Zhao
Wenxiang Jin
Minshan Qiu
Qianwei Zheng
Chen Liu
Xiangxiang Bai
Deyin Guo
Edward C. Holmes
Nan-Shan Zhong
Mang Shi
Zifeng Yang
Source :
SSRN Electronic Journal.
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Background: The current pandemic of COVID-19 is posing a major challenge to public health on a global scale. While it is generally believed severe COVID-19 results from over-expression of inflammatory mediators (i.e. a “cytokine storm”), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of disease in severe COVID-19 cases to reveal the presence and abundance of all potential pathogens present - the total “infectome” - and how they interact with the host immune system in the context of severe COVID-19 disease. Methods: We considered one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood and serum) taken in each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously reveal pathogen diversity and abundance, as well as host immune responses, within each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels. Findings: Eight pathogens were identified in these COVID-19 patients - Aspergillus fumigatus, Mycoplasma orale, Myroides odorantus, Acinetobacter baumannii, Candida tropicalis, herpes simplex virus and human cytomegalovirus - that appeared at different stages of disease course. Notably, the dynamics of inflammatory mediators in the serum as well as respiratory tract were better associated with the dynamics of the infectome as a whole rather than SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn was associated with the proliferation of SARS-CoV-2 and the co-infecting pathogens. Interpretation: The cytokine storm that resulted in aggravated acute lung injury and death involved the highly complex and dynamic entire infectome of each patient, of which SARS-CoV-2 was a component. These results call for a precision-medicine approach to investigating both the infection and the host response on a daily basis as a standard means of infectious disease characterization. Funding: Guangzhou Institute of Respiratory Health Open Project (Funds provided by China Evergrande Group) - Project No. (2020GIRHHMS01), Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project (2019ZT08Y464), Macao Science and Technology Development Fund (0042/2020/A), Science research project of the Guangdong Province (2019B030316028), Special Project for Scientific and Technological Development and Emergency Response in COVID-19 Prevention and Control of Guangdong Province (2020A111129028), Special Project for Research and Promotion of Prevention and Control Techniques of COVID-19 and Emergency Response in Dongguan City (202071715001114), Jack Ma Foundation (2020-CMKYGG-02), Guangzhou Medical University High-level University Clinical Research and Cultivation Program ([2017] 159 and 160) and ARC Australian Laureate Fellowship (FL170100022). Declaration of Interests: We declare no competing interests. Ethics Approval Statement: The ethics committee of the FAHGMU (Ethics No. 2020-85) and Dongguan’s People’s Hospital (KYKT2020-005-A1) approved the sampling procedure and the use of patient samples for this study. Informed consent was obtained from each patient.

Details

ISSN :
15565068
Database :
OpenAIRE
Journal :
SSRN Electronic Journal
Accession number :
edsair.doi...........70160f43c7475a00ccf170018f301486
Full Text :
https://doi.org/10.2139/ssrn.3739805