Back to Search Start Over

The PAU Survey & Euclid: Improving broad-band photometric redshifts with multi-task learning

Authors :
Cabayol, L.
Eriksen, M.
Carretero, J.
Casas, R.
Castander, F. J.
Fernández, E.
Garcia-Bellido, J.
Gaztanaga, E.
Hildebrandt, H.
Hoekstra, H.
Joachimi, B.
Miquel, R.
Padilla, C.
Pocino, A.
Sanchez, E.
Serrano, S.
Sevilla, I.
Siudek, M.
Tallada-Crespí, P.
Aghanim, N.
Amara, A.
Auricchio, N.
Baldi, M.
Bender, R.
Bonino, D.
Branchini, E.
Brescia, M.
Brinchmann, J.
Camera, S.
Capobianco, V.
Carbone, C.
Castellano, M.
Cavuoti, S.
Cimatti, A.
Cledassou, R.
Congedo, G.
Conselice, C. J.
Conversi, L.
Copin, Y.
Corcione, L.
Courbin, F.
Cropper, M.
Da Silva, A.
Degaudenzi, H.
Douspis, M.
Dubath, F.
Duncan, C. A. J.
Dupac, X.
Dusini, S.
Farrens, S.
Fosalba, P.
Frailis, M.
Franceschi, E.
Franzetti, P.
Garilli, B.
Gillard, W.
Gillis, B.
Giocoli, C.
Grazian, A.
Grupp, F.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Hornstrup, A.
Hudelot, P.
Jahnke, K.
Kümme, M.
Kermiche, S.
Kiessling, A.
Kilbinger, M.
Kohley, R.
Kurki-Suonio, H.
Ligori, S.
Lilje, P. B.
Lloro, I.
Maiorano, E.
Mansutti, O.
Marggraf, O.
Markovic, K.
Marulli, F.
Massey, R.
Meneghetti, M.
Merlin, E.
Meylan, G.
Moresco, M.
Moscardini, L.
Munari, E.
Nakajima, R.
Niemi, S. M.
Paltani, S.
Pasian, F.
Pedersen, K.
Pettorino, V.
Polenta, G.
Poncet, M.
Popa, L.
Pozzetti, L.
Raison, F.
Rebolo, R.
Rhodes, J.
Riccio, G.
Rosset, C.
Rossetti, E.
Saglia, R.
Sartoris, B.
Schneider, P.
Secroun, A.
Seide, G.
Sirignano, C.
Sirri, G.
Stanco, L.
Taylor, A. N.
Tereno, I.
Toledo-Moreo, R.
Torradeflot, F.
Tutusaus, I.
Valentijn, E.
Valenziano, L.
Wang, Y.
Weller, J.
Zamorani, G.
Zoubian, J.
Andreon, S.
Mei, S.
Scottez, V.
Tramacere, A.
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

Current and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-zs that are 13% more precise down to magnitude i_{AB} < 23; the outlier rate is also 40% lower when compared to the baseline network. Furthermore, MTL reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z>1. Applying this technique to deeper samples is crucial for future surveys such as \Euclid or LSST. For simulated data, training on a sample with i_{AB}<br />20 pages, 16 figures

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........70a10052ef657f46ee5c64a4a5a3655c
Full Text :
https://doi.org/10.48550/arxiv.2209.10161