Back to Search
Start Over
Optimal His-Tag Design for Efficient [99mTc(CO)3]+ and [188Re(CO)3]+ Labeling of Proteins for Molecular Imaging and Radionuclide Therapy by Analysis of Peptide Arrays
- Source :
- Bioconjugate Chemistry. 32:1242-1254
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- Hexahistidine tags (His-tags), incorporated into recombinant proteins to facilitate purification using metal-affinity chromatography, are useful binding sites for radiolabeling with [99mTc(CO)3]+ and [188Re(CO)3]+ for molecular imaging and radionuclide therapy. Labeling efficiencies vary unpredictably, and the method is therefore not universally useful. To overcome this, we have made quantitative comparisons of radiolabeling of a bespoke Celluspots array library of 382 His-tag-containing peptide sequences with [99mTc(CO)3]+ and [188Re(CO)3]+ to identify key features that enhance labeling. A selected sequence with 10-fold enhanced labeling efficiency compared to the most effective literature-reported sequences was incorporated into an exemplar protein and compared biologically with non-optimized analogues, in vitro and in vivo. Optimal labeling with either [99mTc(CO)3]+ or [188Re(CO)3]+ required six consecutive His residues in the protein sequence, surrounded by several positively charged residues (Arg or Lys), and the presence of phosphate in the buffer. Cys or Met residues in the sequence were beneficial, to a lesser extent. Negatively charged residues were deleterious to labeling. His-tags with adjacent positively charged residues could be labeled as much as 40 times more efficiently than those with adjacent negatively charged residues. 31P NMR of [Re(CO)3(H2O)3]+ and electrophoresis of solutions of [99mTc(CO)3(H2O)3]+ suggest that phosphate bridges form between cationic residues and the cationic metal synthon during labeling. The trial optimized protein, a scFv targeted to the PSMA antigen expressed in prostate cancer, was readily labeled in >95% radiochemical yield, without the need for subsequent purification. Labeling occurred more quickly and to higher specific activity than comparable non-optimized proteins, while retaining specific binding to PSMA and prostate cancer in vivo. Thus, optimized His-tags greatly simplify radiolabeling of recombinant proteins making them potentially more widely and economically available for imaging and treating patients.
- Subjects :
- Stereochemistry
Biomedical Engineering
Pharmaceutical Science
Bioengineering
Peptide
02 engineering and technology
01 natural sciences
law.invention
Protein sequencing
In vivo
law
Binding site
Pharmacology
chemistry.chemical_classification
010405 organic chemistry
Chemistry
Organic Chemistry
Synthon
021001 nanoscience & nanotechnology
0104 chemical sciences
3. Good health
Radionuclide therapy
Recombinant DNA
Specific activity
0210 nano-technology
Biotechnology
Subjects
Details
- ISSN :
- 15204812 and 10431802
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- Bioconjugate Chemistry
- Accession number :
- edsair.doi...........7158e874d2ed9bbc1718da7807eb3151
- Full Text :
- https://doi.org/10.1021/acs.bioconjchem.0c00561