Back to Search Start Over

Mesoporous, nitrogen-doped, graphitized carbon nanosheets embedded with cobalt nanoparticles for efficient oxygen electroreduction

Authors :
Shaowei Chen
Xinwen Peng
Yunpeng Qu
Ligui Li
Ni Zhou
Wenhan Niu
Source :
Journal of Materials Science. 54:4168-4179
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Nitrogen-doped graphitized carbon nanosheets embedded with crystalline cobalt nanoparticles are facilely synthesized with the aid of melamine-containing hydrogen-bonded organic frameworks (HOF). Experimentally, HOF microrods with an in situ polymerized dopamine (DA) overlayer are coordinated with Co2+ cations and used as a precursor. After pyrolyzing the Co@DA-HOF precursor, irregular sheet-like carbons comprising a large number of Co nanoparticles as well as abundant mesopores are obtained (Co@MPC-T). The thermal decomposition of melamine-containing HOF microrods during high-temperature pyrolysis helps generate the abundant porous structures in the resulting catalyst samples. Thus, synthesized Co@MPC-T catalysts display an apparent ORR activity, and the one pyrolyzed at 800 °C is determined to show the highest ORR catalytic activity among the series, with a half-wave potential of + 0.796 V, a diffusion-limiting current density of 5.492 mA cm−2 at + 0.200 V and a kinetic current of 51.40 mA cm−2 that is even two times higher than the 20.10 mA cm−2 for commercial Pt/C catalyst. Moreover, benefiting from the protection of graphitized carbon overlayer, Co@MPC-800 shows a substantially higher operation stability as well as superior tolerance to fuel crossover, as compared with the commercial Pt/C catalyst. The remarkable ORR performance of Co@MPC-800 highlights the high potential of graphitized two-dimensional carbon composites with nonprecious transition metal nanoparticles in electrocatalysis.

Details

ISSN :
15734803 and 00222461
Volume :
54
Database :
OpenAIRE
Journal :
Journal of Materials Science
Accession number :
edsair.doi...........7183b64e21aec869984ad09fc467445c
Full Text :
https://doi.org/10.1007/s10853-018-3121-7