Back to Search Start Over

SARS-CoV-2 detection with ApharSeq v3

Authors :
Daphna Strauss
Ayelet Rahat
Israa Sharkia
Alon Chappleboim
Miriam Adam
Daniel Kitsberg
Gavriel Fialkoff
Matan Lotem
Omer Gershon
Anna-Kristina Schmidtner
Esther Oiknine-Djian
Agnes Klochendler
Ronen Sadeh
Yuval Dor
Dana Wolf
Naomi Habib
Nir Friedman
Publication Year :
2020
Publisher :
ZappyLab, Inc., 2020.

Abstract

The global SARS-CoV-2 pandemic led to a steep increase in the need for viral detection tests worldwide. Most current tests for SARS-CoV-2 are based on RNA extraction followed by quantitative reverse-transcription PCR assays that involve a separate RNA extraction and qPCR reaction for each sample with a fixed cost and reaction time. While automation and improved logistics can increase the capacity of these tests, they cannot exceed this lower bound dictated by one extraction and reaction per sample. Multiplexed next generation sequencing (NGS) assays provide a dramatic increase in throughput, and hold the promise of richer information on viral strains and host immune response. Here, we establish a significant improvement of existing RNA-seq detection protocols. Our workflow, ApharSeq (Amplicon Pooling by Hybridization And RNA-Seq), includes a fast and cheap RNA capture step, that is coupled to barcoding of individual samples, followed by sample-pooling prior to the reverse transcription, PCR and massively parallel sequencing. Thus, only one step is performed before pooling hundreds of barcoded samples for subsequent steps and further analysis. Considering these improvements, our proposed workflow is estimated to reduce costs by 10-50 fold, labor by 5-100 fold, automated liquid handling by 5-10 fold, and reagent requirements by 100-1000 fold compared to existing methods.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........7221db9825a45fbc01fb58dd64be89c7
Full Text :
https://doi.org/10.17504/protocols.io.bkdcks2w