Back to Search Start Over

Isotope production in proton-, deuteron-, and carbon-induced reactions on Nb93 at 113 MeV/nucleon

Authors :
Kathrin Wimmer
Shigeru Kubono
Hiroyoshi Sakurai
Yasushi Watanabe
J. Tsubota
Yoshiaki Shiga
Atsumi Saito
D. S. Ahn
Pieter Doornenbal
A. Makinaga
Yukinobu Watanabe
Masayuki Aikawa
Toshiyuki Kubo
Naoki Fukuda
Tadaaki Isobe
T. Ozaki
P. A. Söderström
Yasuhiro Togano
Hiroyuki Takeda
Shin'ichiro Michimasa
S. Kawakami
Masafumi Matsushita
Sidong Chen
M. Shikata
Nobuyuki Chiga
Susumu Shimoura
Tadahiro Kin
Meiko Uesaka
Takeshi Saito
Satoshi Takeuchi
Hiroshi Suzuki
Toshiyuki Sumikama
Satoru Momiyama
Yosuke Kondo
Koichi Yoshida
Takashi Nakamura
Shoichiro Kawase
Hongwei Wang
Yohei Shimizu
Yukie Maeda
Takashi Ichihara
Shouhei Araki
Teiichiro Matsuzaki
Ryo Taniuchi
Hideaki Otsu
Tatsuya Yamamoto
Megumi Niikura
Shunpei Koyama
S. Nagamine
Keita Nakano
Source :
Physical Review C. 100
Publication Year :
2019
Publisher :
American Physical Society (APS), 2019.

Abstract

Isotope-production cross sections for p-, d-, and C-induced spallation reactions on Nb93 at 113 MeV/nucleon were measured using the inverse-kinematics method employing secondary targets of CH2, CD2, and C. The measured cross sections for Mo90, Nb90, Y86,88 produced by p-induced reactions were found to be consistent with those measured by the conventional activation method. We performed benchmark tests of the reaction models INCL-4.6, JQMD, and JQMD-2.0 implemented in the Particle and Heavy Ion Transport code System (PHITS) and of the nuclear data libraries JENDL-4.0/HE, TENDL-2017, and ENDF/B-VIII.0. The model calculations also showed generally good agreement with the measured isotope-production cross sections for p-, d-, and C-induced reactions. It also turns out that, among the three nuclear data libraries, JENDL-4.0/HE provides the best agreement with the measured data for the p-induced reactions. We compared the present Nb93 data with the Zr93 data, that were measured previously by the same inverse kinematics method (Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017)2050-391110.1093/ptep/ptx110), with particular attention to the effect of neutron-shell closure on isotope production in p- and d-induced spallation reactions. The isotopic distributions of the measured production cross sections in the Zr93 data showed noticeable jumps at neutron number N=50 in the isotopic chains of ΔZ=0 and -1, whereas no such jump appeared in isotopic chain of ΔZ=0 in the Nb93 data. From INCL-4.6 + GEM calculations, we found that the jump formed in the evaporation process is smeared out by the intranuclear cascade component in Nb91 produced by the Nb93(p,p2n) and (d,d2n) reactions on Nb93. Moreover, for Nb93, the distribution of the element-production cross sections as a function of the change in proton number ΔZ is shifted to smaller ΔZ than for Zr93, because the excited Nb prefragments generated by the cascade process are more likely to emit protons than the excited Zr prefragments, due to the smaller proton-separation energies of the Nb isotopes.

Details

ISSN :
24699993, 24699985, and 20503911
Volume :
100
Database :
OpenAIRE
Journal :
Physical Review C
Accession number :
edsair.doi...........7303827871853171f35e5fca2a7b28e1
Full Text :
https://doi.org/10.1103/physrevc.100.044605