Back to Search
Start Over
Performance of 4D-Var with Different Strategies for the Use of Adjoint Physics with the FSU Global Spectral Model
- Source :
- Monthly Weather Review. 128:668-688
- Publication Year :
- 2000
- Publisher :
- American Meteorological Society, 2000.
-
Abstract
- A set of four-dimensional variational data assimilation (4D-Var) experiments were conducted using both a standard method and an incremental method in an identical twin framework. The full physics adjoint model of the Florida State University global spectral model (FSUGSM) was used in the standard 4D-Var, while the adjoint of only a few selected physical parameterizations was used in the incremental method. The impact of physical processes on 4D-Var was examined in detail by comparing the results of these experiments. The inclusion of full physics turned out to be significantly beneficial in terms of assimilation error to the lower troposphere during the entire minimization process. The beneficial impact was found to be primarily related to boundary layer physics. The precipitation physics in the adjoint model also tended to have a beneficial impact after an intermediate number (50) of minimization iterations. Experiment results confirmed that the forecast from assimilation analyses with the full physics adjoint model displays a shorter precipitation spinup period. The beneficial impact on precipitation spinup did not result solely from the inclusion of the precipitation physics in the adjoint model, but rather from the combined impact of several physical processes. The inclusion of full physics in the adjoint model exhibited a detrimental impact on the rate of convergence at an early stage of the minimization process, but did not affect the final convergence. A truncated Newton-like incremental approach was introduced for examining the possibility of circumventing the detrimental aspects using the full physics in the adjoint model in 4D-Var but taking into account its positive aspects. This algorithm was based on the idea of the truncated Newton minimization method and the sequential cost function incremental method introduced by Courtier et al., consisting of an inner loop and an outer loop. The inner loop comprised the incremental method, while the outer loop consisted of the standard 4D-Var method using the full physics adjoint. The limited-memory quasi-Newton minimization method (L-BFGS) was used for both inner and outer loops, while information on the Hessian of the cost function was jointly updated at every iteration in both loops. In an experiment with a two-cycle truncated Newton-like incremental approach, the assimilation analyses turned out to be better than those obtained from either the standard 4D-Var or the incremental 4D-Var in all aspects examined. The CPU time required by this two-cycle approach was larger by 35% compared with that required by the incremental 4D-Var without almost any physics in the adjoint model, while the CPU time required by the standard 4D-Var with the full physics adjoint model was more than twice that required by the incremental 4D-Var. Finally, several hypotheses concerning the impact of using standard 4D-Var full physics on minimization convergence were advanced and discussed.
Details
- ISSN :
- 15200493 and 00270644
- Volume :
- 128
- Database :
- OpenAIRE
- Journal :
- Monthly Weather Review
- Accession number :
- edsair.doi...........73086a6c3c3eb20951f936cf4387b1c9
- Full Text :
- https://doi.org/10.1175/1520-0493(2000)128<0668:povwds>2.0.co;2