Back to Search Start Over

Bioinformatics Study on the Response of Human Endothelial Cells to Different Strains of Staphylococcus Aureus

Authors :
Tian-Ao Xie
Wen-chao Cao
Heng Zhang
Jia-xin Chen
Jie Lv
Xu-Guang Guo
Xun-Jie Cao
Yu-wei Zhang
Ke-ying Fang
Publication Year :
2020
Publisher :
Research Square Platform LLC, 2020.

Abstract

BackgroundStaphylococcus aureus-induced bacteremia has an impact on human health due to its high mortality rate of 20–30%. To better study the invasion process of staphylococcus aureus, we conducted a study in human endothelial cells to try to find a link between the infection process and bacteremia at the molecular level.MethodsIn this study, the datasets GSE13736, GSE82036 were analyzed using R software to identify differentially expressed genes. Only the infection samples of four different strains had differential gene expression compared to the control samples. Then the GO analysis and KEGG analysis were conducted to construct a protein-protein interaction (PPI) network which shows the interaction and influence relationship between these differential genes. Finally, the central gene of the selected CytoHubba plug-in was verified using GraphPad Prism 8.ResultsThere were 421 differential genes in the Strain 6850, including 64 up-regulated and 357 down-regulated; There were 319 differential genes in the Strain 8325-4, including 14 up-regulated and 305 down-regulated. There were 90 differential genes in the Strain K70058396, including 12 up-regulated and 78 down-regulated. There were 876 differential genes in the Strain K1801/10, accompanied by 261 up-regulated and 615 down-regulated. An analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways associated with immune response and cytokines; Verification of the hub gene can provide a molecular basis for studying the relationship between invasive endothelial infection and bacteremia.ConclusionsWe found specific gene expression patterns in endothelial cells in response to infection with Strain K70058396, and these central genes and their expression products (RSAD2, DDX58, IFITT3, and IFIH1) play a key role in this process of infection.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........73f727c2472560a4712cdae3416b617e