Back to Search
Start Over
Microstructure, Electrical and Thermal Conductivity of the As-Extruded Al-xMM (Mischmetal) Based Alloys
- Source :
- Journal of Nanoscience and Nanotechnology. 21:1984-1989
- Publication Year :
- 2021
- Publisher :
- American Scientific Publishers, 2021.
-
Abstract
- The effect of addition of Mischmetal (MM) on the microstructure, electrical and thermal conductivity, and mechanical properties of the as-extruded Al-MM based alloys were investigated. The studied AlxMM alloys (where x = 0.2, 0.5, 1.0, 1.5, 2.0 and 5.0 wt.%) were cast and homogenized at 550 °C for 4 h. The cast billets were extruded into 12 mm bars with an extrusion ratio of 39 at 550 °C. The addition of MM resulted in the formation of Al11(Ce, La)3 intermetallic compounds and the area fraction of these intermetallic compounds increased with an increase in the MM content. The Al11(Ce, La)3 phase, which was distributed in the as-cast alloys, was crushed into fine particles and arrayed along the extruded direction during the extrusion process. In particular, these intermetallic compounds in the extruded Al-5.0MM alloy were distributed with a wide-band structure due to the fragmentation of the eutectic phase with a lamellar structure. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the average grain size decreased remarkably from 740 to 73 μm. This was due to formation of Al11(Ce, La)3 particles during the hot extrusion process, which promoted dynamic recrystallization and suppression of grain growth. The electrical and thermal conductivity of the extruded alloys containing up to 2.0 wt.% MM were around 60.5% IACS and 230 W/m · K, respectively. However, the electrical and thermal conductivity of the extruded alloy with 5.0 wt.% MM decreased to 55.4% IACS and 206 W/m · K, respectively. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the ultimate tensile strength (UTS) was improved remarkably from 74 to 119 MPa which was attributed to the grain refinement and formation of Al11(Ce, La)3 intermetallic compounds by the addition of MM.
Details
- ISSN :
- 15334880
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Journal of Nanoscience and Nanotechnology
- Accession number :
- edsair.doi...........746f53544bdceef9c13a4c15f80d3903