Back to Search
Start Over
Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions
- Source :
- Numerical Algorithms. 74:371-391
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212---223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24---32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257---264 1977; Candela and Marquina. Computing 44, 169---184 1990; Candela and Marquina. Computing 45(4), 355---367 1990; Chun. Appl. Math. Comput. 190(2), 1432---1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686---698 2007; Deghan. Comput. Appl Math. 29(1), 19---30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513---519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356---365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686---698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356---365 2012; Ezquerro and Hernandez. Appl. Math. Optim. 41(2), 227---236 2000; Ezquerro and Hernandez. BIT Numer. Math. 49, 325---342 2009; Ezquerro and Hernandez. J. Math. Anal. Appl. 303, 591---601 2005; Gutierrez and Hernandez. Comput. Math. Appl. 36(7), 1---8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21---31 1991; Gonzalez-Crespo et al. Expert Syst. Appl. 40(18), 7381---7390 2013; Hernandez. Comput. Math. Appl. 41(3-4), 433---455 2001; Hernandez and Salanova. Southwest J. Pure Appl. Math. 1, 29---40 1999; Jarratt. Math. Comput. 20(95), 434---437 1966; Kou and Li. Appl. Math. Comput. 189, 1816---1821 2007; Kou and Wang. Numer. Algor. 60, 369---390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60---66 2010; Magrenan. Appl. Math. Comput. 233, 29---38 2014; Magrenan. Appl. Math. Comput. 248, 215---224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873---887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585---603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129---142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468---477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441---456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Frechet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study
- Subjects :
- Discrete mathematics
Applied Mathematics
Mathematical analysis
0202 electrical engineering, electronic engineering, information engineering
020206 networking & telecommunications
010103 numerical & computational mathematics
02 engineering and technology
0101 mathematics
Algebra over a field
01 natural sciences
Mathematics
Local convergence
Subjects
Details
- ISSN :
- 15729265 and 10171398
- Volume :
- 74
- Database :
- OpenAIRE
- Journal :
- Numerical Algorithms
- Accession number :
- edsair.doi...........756e5e540bf352ba44d7d76f85bf534d